2022

CHEMISTRY — HONOURS

Paper: CC-2

Full Marks: 50

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Write the answers to *Physical Chemistry-1* (Group-A) and *Organic Chemistry-1B* (Group-B) questions in *separate answer books*.

Group - A

(Physical Chemistry - 1)

Answer question no. 1 (compulsory) and any five questions from the rest (question nos. 2 to 9).

1. Answer the following questions:

- 1×8
- (a) For a real gas, which one is expected to be higher between T_B and T_C ? Why?
- (b) Real gases, at high pressure, are hard to compress.— Explain.
- (c) Define 'flux' with an example. Is it a vector quantity or scalar?
- (d) How does 'Diffusion Coefficient' vary with temperature and pressure?
- (e) What is the order of a unimolecular elementary reaction? Justify briefly.
- (f) At 0° C temperature and 1 atm pressure the mean free path of an ideal gas is 10^{-7} m. Calculate the radius of the gas molecule.
- (g) State the principle of equipartition of energy.
- (h) What would be the type of the slope (positive or negative) in the Z vs. P plot at a constant temperature in the limit of zero pressure for a van der Waals gas whose $b < \frac{a}{RT}$?
- 2. (a) Starting from Maxwell's molecular Kinetic energy distribution function, derive an expression for the most probable kinetic energy, $\epsilon_{\text{most probable}}$. Is $\epsilon_{\text{most probable}} = \frac{1}{2} \, \text{m} \, (C_{\text{most probable}})^2$? Comment.
 - (b) For a triatomic gas, $\gamma = \frac{C_p}{C_v} = 1.66\overline{6}$... show that the molecule is non-linear.

- 3. (a) Draw the theoretical (van der Waals) and experimental P-V isotherm for a real gas below the critical temperature explaining the difference in nature between the two.
 - (b) Calculate the % of gas molecules (behaving ideally) that are expected to have kinetic energy less than 6.5 kJ mol⁻¹ at 250 K.
- 4. (a) The molecules of a gas are confined to move in a plane, the speed distribution function being expressed as:

$$\frac{dn_c}{n} = \left(\frac{m}{kT}\right) e^{-mc^2/2kT} c dc.$$

Calculate the probability of a molecule having a kinetic energy equal to or greater than a given value ϵ' .

- (b) The coefficient of viscosity, η of H_2 at 0°C and 1 atm is 8.53 μ PaS. Find η of D_2 at 0°C and 1 atm. Assume that $\sigma_{H_2} = \sigma_{D_2}$.
- 5. (a) The decomposition of Ozone : $2O_3 \rightarrow 3O_2$ proceeds through the following steps :

$$O_3 \xrightarrow{k_1} O_2 + O$$

$$O + O_3 \xrightarrow{k_2} 2O_2 \text{ (slow)}$$

Obtain the rate expression for the reaction in terms of the individual rate constants using steady state approximation.

- (b) How does the time required for a first-order reaction to go to 99% completion relate to the half-life of the reaction?
- **6.** (a) The hydrolysis of a substance is catalysed specifically by hydrogen ions, the rate constant being given by

$$k(S^{-1}) = 4.70 \times 10^{-2} \times [H^{+}] \text{ (mol dm}^{-3}).$$

When the substance is dissolved in a 1.0×10^{-3} (M) solution of an acid HA, the rate constant is 3.2×10^{-5} S⁻¹. Calculate the dissociation constant of the acid HA.

- (b) Find out the terminal velocity of a raindrop of radius 0.01 cm falling through air of viscosity coefficient 1.85×10^{-4} poise. Neglect the density of air in comparison to that of water (density of water = 1g cm⁻³).
- 7. (a) Although the virial equation of state of a real gas coincides with that of the perfect gas at P → 0, not all its properties necessarily coincide with those of a perfect gas in that limit.— Justify with the example of variation of compressibility factor (Z).
 - (b) Assuming the intermolecular attraction to be negligible for a gas, and its molar volume at 0°C and 100 atm pressure is 1.107×10⁻² times the volume at NTP, calculate the molecular diameter of the gas.
 3+2

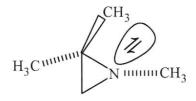
- **8.** (a) A layer of oil, 1.5 mm thick is placed between two microscopic slides. A force of 5.5×10^{-4} N is required to glide one slide over the other at a speed of 1 cm/s when their contact area is 12 sqcm. Calculate the coefficient of viscosity of the oil.
 - (b) Explain briefly whether viscosity has any effect on the rate of diffusion.

3+2

- 9. (a) The expression for rate constant of a reaction is given by $\log K = A \frac{B}{T} + C \log T$. Find the expression for activation energy of the reaction.
 - (b) The half-life of decomposition of a compound is 45 minutes. If the initial concentration is halved, the half-life becomes 90 minutes. What is the order of the decomposition reaction? Justify your answer.
 3+2

Group - B

[Organic Chemistry - (1B)]


Answer question no. 10 (compulsory) and any three questions from the rest (question nos. 11 to 15).

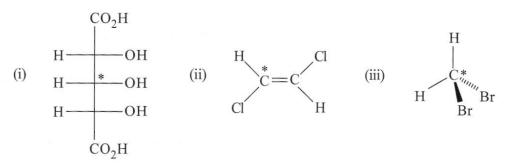
- 10. (a) Represent meso-tartaric acid in Fischer projection formula and convert it to Newmann Projection.
 - (b) Draw the orbital picture of diphenyl carbene.

1 + 1

- 11. (a) Write down all the possible conformers of active butane-2-3-diol. Indicate the most stable conformer giving proper reason.
 - (b) Is this aziridine compound resolvable? Explain.

3+2

12. (a) Assign R/S descriptor of the following showing priority sequence of the ligands:

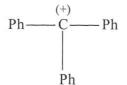

(i)
$$HO \longrightarrow CHMe_2$$
 (ii) $HO \longrightarrow CHMe_2$ (iii) $HO \longrightarrow CHMe_2$ (iiii) $HO \longrightarrow CHMe_2$ (iii) $HO \longrightarrow CHMe_2$ (iiii) $HO \longrightarrow CHMe_2$ (iiii) $HO \longrightarrow CHMe_2$ (iiii

(b) Draw the Fischer projection of active 2,3-dihydroxybutanoic acid. Convert it to Newmann Projection (staggered only).

X(1st Sm.)-Chemistry-H/CC-2/CBCS

(4)

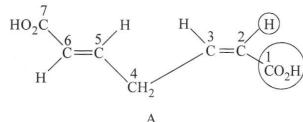
13. (a) Designate the marked (*) centres of the following compounds as stereogenic/non-stereogenic, chirotopic/achirotopic with reasons:


- (b) Write the structure of the following:
 - (i) $2\underline{R}$, $3\underline{r}^*$, $4\underline{S}$ –2,3,4-trichloropentane
 - (ii) syn-CH₃CH(OH)CH(CH₃)COPh

3+2

14. (a) Comment on the stability of the following pairs with reason:

(i)
$$\bigcirc C$$
 Me and $\bigcirc S$ $\bigcirc C$ Me



- (b) Indicate the symmetry elements present in the following compounds:
 - (i) $CHCl_3$ (ii) $CH_2 = C = CH_2$

3+2

15. (a) The following compound (\underline{A}) can be named as $(2\underline{Z}, 5\underline{E})$ -2,5-heptadienedioic acid or (2E, 5Z)-2,5-heptadienedioic acid. Which one is correct? What should be the name of the compound if the encircled groups are mutually exchanged?

(b) Define non-classical carbocation with one example.

3+2